
Mobile Malware Detection Based on
Energy Fingerprints — A Dead End?

Johannes Hoffmann, Stephan Neumann, Thorsten Holz

Horst Görtz Institute (HGI), Ruhr-University Bochum, Germany
{firstname.lastname}@rub.de

Abstract. With the ever rising amount and quality of malicious software for mo-
bile phones, multiple ways to detect such threats are desirable. Next to classical
approaches such as dynamic and static analysis, the idea of detecting malicious
activities based on the energy consumption introduced by them was recently pro-
posed by several researchers. The key idea behind this kind of detection is the
fact that each activity performed on a battery powered device drains a certain
amount of energy from it. This implies that measuring the energy consumption
may reveal unwanted and possibly malicious software running next to genuine
applications on such a device: if the normal energy consumption is known for a
device, additional used up energy should be detectable.
In this paper, we evaluate whether such an approach is indeed feasible for modern
smartphones and argue that results presented in prior work are not applicable to
such devices. By studying the typical energy consumption of different aspects of
common Android phones, we show that it varies quite a lot in practice. Further-
more, empirical tests with both artificial and real-world malware indicate that the
additional power consumed by such apps is too small to be detectable with the
mean error rates of state-of-the art measurement tools.

1 Introduction

In the last years, smartphone sales began to rise significantly [3] and also the number
of malicious software for these devices grew [4,21]. As a result, several techniques to
analyze smartphone applications emerged with the goal to detect and warn users of un-
wanted software. Most solutions are based on classic techniques known from the PC
area, such as dynamic and static analyses (e. g., [8,7,10,22]). Based on the fact that mo-
bile phones are powered by a battery and the insight that every performed action drains a
specific amount of energy from that battery, the idea came up to measure the consumed
energy and to deduce from that data whether any unwanted (malicious) activities oc-
curred, possibly hidden from the user [12,13]. The developed tools use the system API
or additional external devices to obtain information about the battery status, running
applications, actions performed by the user (if any), and calculate the normal amount
of energy a clean device should consume under such circumstances. This model is then
used in the detection phase to compare live measurement data against it in order to de-
tect additional activities. Such a method could—at least in theory—detect software that
was loaded onto the device or applications that suddenly behave in a different way.

The proposed prototypes [12,13] were implemented and tested on feature phones
with a limited amount of additional installable (third party) applications compared to



2 Johannes Hoffmann, Stephan Neumann, Thorsten Holz

the “application markets” of today’s smartphones. Furthermore, the devices themselves
were equipped with considerably less features and sensors, such as an accelerometer,
GPS, WiFi, large touchscreens, or a full-blown browser. Compared to a modern smart-
phone, these feature phones offer less possibilities to a user.

Throughout this paper, we attempt to verify or disprove the possibility to detect
malware on modern smartphones based on their energy consumption. We use a spe-
cialized tool named PowerTutor [20] to measure the energy consumption of several
potentially malicious activities in both short and long time test scenarios. We evaluate
the energy consumption for each action and the energy consumption for the complete
device based on the reports provided by PowerTutor. Our short time tests aim to get an
idea of the measurement possibilities for a short time duration (5 minutes) and the long
time tests (1 hour) evaluate what is possible in scenarios that can be found on smart-
phones used every day. We measure the impact of classic malicious activities such as
stealing personal data or abusing the short message service (SMS) next to artificial ones
like draining the battery as fast as possible in order to commit some kind of denial-of-
service attack. We implement our own proof-of-concept malware that accomplishes our
malicious tasks and we validate our findings with two real-world malware samples.

Our main contribution is the evaluation of a method to detect malicious software
that was conducted in the first place on “old” feature phones rather than on modern
smartphones. We argue that the proposed methods do not hold in practice anymore and
study in detail how a modern Android phone consumes power. We show that the energy
needed to perform relevant malicious activities, such as stealing private data, is too
small to be detectable with the mean error rates of state-of-the art measurement tools.

2 Related Work

Since we want to (dis)prove that malware detection is possible on a modern smartphone
by measuring its power consumption, we first discuss related work in this field.

Kim et al. introduced the idea of detecting malicious software based on its power
consumption [12]. They built a prototype for phones running Windows Mobile 5.0 that
works with power signatures. These signatures are based on the power consumption of
a program rather than its code or exhibited behavior. In order to be useful to the enduser,
a signature database has to be available. This circumstance does not allow the detection
of new and unknown malware, as no signature is available.

Another tool for Symbian based phones was proposed by Liu et al. [13]. Their
tool, called VirusMeter, works without any signatures but on heuristics. In a first step,
the user’s behavior and the corresponding power consumption on a clean system is
profiled. Then, in a second step, the actual used energy is compared against the learned
profile and if a certain threshold is reached, the systems alerts the user that additional
(maybe malicious) activities have been performed on the phone. Throughout this paper,
we perform similar tests not on features phones but on modern Android smartphones
and evaluate to what extend malicious activities can be detected (if any).

Work by Dixon et al. shows that the location has a huge impact on the user’s ac-
tivities [5]. Leveraging this information, the average power consumption for different
locations can be computed that could then be used to detect anomalies in the power



Mobile Malware Detection Based on Energy Fingerprints — A Dead End? 3

signature for these locations if, e. g., malware performs additional operations next to
the expected power consumption introduced by a user. A study performed by Balasub-
ramanian et al. [2] analyzed the tail energy overhead introduced by transfers over the
wireless connections offered by smartphones. Although they measured the used energy
for different connection types, they focused on the amount of energy that can be saved
if a special protocol is used by applications that make use of wireless connections.

Dong et al. propose Sesame, a tool that is able to generate a power model for smart-
phones and notebooks and the underlying hardware, battery, usage etc. by itself without
external tools [6]. They argue that factory-built models are unlikely to provide accurate
values for different scenarios, such as different hardware or usage patterns.

Since all such tools need to measure the used energy in one or another way, work
related to this task is also relevant for us. The first tool, called PowerTutor [20], was
designed to provide a precise report of energy spent on a smartphone. This report in-
cludes the power consumption of sole devices such as the NIC or the display. In order
to provide a very detailed power model for an analyzed application, a power model for
the used mobile device has to be calculated in the first place. This model was generated
with the help of specialized hardware that precisely measured the power consumption
of the device under certain circumstances. Since these models are bound to the device,
accurate results with a claimed long-term error rate of less than 2.5% for an applica-
tion’s lifespan can only be provided if PowerTutor runs on such a “calibrated” device.
PowerTutor runs on Android, requires no changes to the operating system and the An-
droid framework, and its source code is freely available.

Next to PowerTutor, a tool called eprof was introduced to measure the power con-
sumption of a given app on Windows Mobile and Android smartphones [16]. It is also
able to provide a breakdown of the power consumption of sole methods inside applica-
tions. This is possible because eprof works on the system call level: all I/O operations
that consume energy from internal devices are realized through system calls performed
by the application, e. g., sending a packet over the mobile Internet connection through
the GPS modem. This enables a precise measurement of the energy spent for an appli-
cation in question. This measurement method is different compared to the utilization-
based one performed by PowerTutor. The authors of eprof claim an error rate of under
6% for all tested applications in contrast to an error rate of 3–50% for utilization-based
methods. Furthermore, eprof can be used to measure which application components use
what amount of energy [15]. The tool is not available and the authors describe changes
to the OS kernel, the OS/Android framework, and the analyzed application itself.

Yoon et al. recently proposed another tool named AppScope [19] to measure the
energy consumption on Android smartphones. Their monitoring software is able to es-
timate the energy consumption on a per app basis in a similar way as PowerTutor by
making use of a kernel module that hooks and reports certain events on the syscall level
and by using a linear power model. The error rate ranges from 0.9–7.5% depending
on the tested software as long as no GPU intense tasks are performed. For games like
Angry Birds it raises up to 14.7%.

All three tools can interfere the current power consumption of an app at whole or
access to some component in detail from some previously generated power model. The
subsystems itself, e. g., the WiFi device or its driver, do not provide such information.



4 Johannes Hoffmann, Stephan Neumann, Thorsten Holz

3 Measurement Setup

To measure accurate power consumption traces for several use cases on a modern smart-
phone, we first have to chose a stable setup under which all studies are performed. Fur-
thermore, we need some way to actually generate accurate power measurements and
we need a tool that performs defined actions that consume power.

Our tool of choice to measure the power consumption is PowerTutor [20], which
was already introduced in the last section. Having access to PowerTutor’s sources, we
modified it slightly such that it generates verbose log files which we used for our cal-
culations throughout this paper. Since we want to verify if a software-based detection
mechanism is capable of detecting additionally installed malware on a smartphone, we
cannot make use of any hardware-assisted measurement mechanisms. Such additional
devices (note that the phone itself is not capable of doing this with the exception of
reporting an approximate battery charge level and voltage) would severely reduce the
user acceptance to perform such measurements at all. Since end users are the target of
such a software as they shall be protected from malicious software, it should be a purely
software based solution as one would expect from traditional AV software products. We
chose PowerTutor over eprof because we have access to the tool, the mean error rate
is comparable, and we are able to generate good measurement results despite using a
utilization-based measurement method since we have control over the test system (i. e.,
we can control how much parallel interaction occur, see Section 4 for more details).

We now describe our software which we used for our test cases and explain the
choice of our used smartphones.

3.1 Android Application

We now describe how we perform the power consumption measurements of different
smartphone features. Since the main contribution of this paper is to (dis)prove the pos-
sibility to detect malicious software due to it’s power consumption, we wrote a software
that is able to run artificial tests of relevant functions that actual Android malware ex-
hibits. While our test malware performs these actions, the power consumption is mea-
sured by PowerTutor.

Our proof-of-concept malware is able to perform the following functions in order
to evaluate what features or combinations of features are detectable. It can send and
receive SMS; make use of the location API; access content providers, e. g., contacts and
SMS database; send arbitrary (encrypted) data over the network; access serial numbers,
e. g., the IMEI; record audio; set Android wake locks to control the power states of the
CPU and the screen; and run in an endless loop to put a heavy burden on the CPU.

These features are typically (more or less) used by malicious applications once they
are installed, with the exception of the last one. Nevertheless, a malware that aims to
disrupt operational time of the smartphone is easily imaginable. The measurement re-
sults for these functions or a combination thereof are later evaluated in order to see
whether such activities are detectable by the amount of consumed power, similar to the
malware tests conducted by VirusMeter [13].

Our software is written in Java and is installed like any other Android application. To
be able to perform the described actions, all required Android permissions are requested



Mobile Malware Detection Based on Energy Fingerprints — A Dead End? 5

in the application’s Manifest file. It basically consists of a control program that initiates
an action over the network and a service which performs it. Actions can be run once,
repeated in an interval, delayed and so on. This scheduling is performed with the help
of the Android AlarmManager. All actions are performed by the service and are there-
fore performed without any GUI elements. This is crucial for the measurement step, as
PowerTutor accounts the power consumption of GUI elements to the appropriate app.
They influence the displays power consumption for OLED displays and, additionally,
foreground processes have a higher priority than background processes within Android.
The power consumption of this test malware will be referred as “MW” in all tables.

3.2 Test Devices

We performed most tests with a HTC Nexus One smartphone. The reason for this is that
this phone was explicitly tested and used by the PowerTutor developers, saving us from
calculating our own power model for the smartphone. They used three different phones,
but the Nexus One is the newest one and is upgradeable to a recent Android version
(Android 2.3.6). Having a rooted phone also enables PowerTutor to calculate a more
precise power consumption for the built-in OLED display which depends on the visible
pixel colors. By using this phone we believe we get the most accurate measurements
out of PowerTutor. All tests are performed by this phone unless stated otherwise.

We additionally performed some tests with a Samsung Galaxy Nexus phone in order
to validate our results. This is the latest Android developer phone by the time of writing
and runs Android version 4.0. The phone is also equipped with an OLED display, albeit
with a newer version being called “HD Super AMOLED”, next to some additional sen-
sors and it is used for validation purposes (although PowerTutor measurements might
be less accurate due to a missing calibration). The phone’s remaining battery capacity
and its runtime can still be used to compare the results with those of the Nexus One.

Both phones have been equipped with new and formerly unused batteries in order to
ensure maximum battery lifetimes. Note that our setup suffers from the same problems
all such systems have, e. g., the reported battery capacity and voltage may change a lot
due to different parameters [14].

4 Short Time Tests

In order to determine whether malicious software is detectable on a phone with the
help of power signatures, we first need to know the power requirements of several soft-
and hardware components. To obtain an overview, we first conducted short time tests
to measure which features consume what amount of battery capacity for later compar-
isons. First, all tests were run with the same basic settings. The hardware GPS module
is activated, but not used. The display brightness is set to a fixed value of 130/255 and
it switches off after 30 seconds of inactivity. The standard live wallpaper is active on
the home screen but no synchronization, background data, mail fetching, or widgets
are active. Internet connectivity is either provided by WiFi or by 3G, depending on the
test. Additionally, the OS is freshly installed and only a few additional applications are
installed: PowerTutor to be able to perform our measurements; MyPhoneExplorer to



6 Johannes Hoffmann, Stephan Neumann, Thorsten Holz

easily access logged data from a PC; K-9 Mail for email fetching; and our own proof-
of-concept malware for our evaluations. All tests are repeated six times in a row for
5 minutes from which the arithmetic median of the consumed energy is calculated.
During this time, no additional interaction with the phone occurs. Note that such mea-
surements do not represent a valid usage pattern in any case, but they enable us to
determine the power consumption of basic phone features.

For all following tests, the same usage pattern is used. When the phone is fully
charged and set to an initial state, PowerTutor is started and directly put in the back-
ground such that the home screen with the live wallpaper and the launcher is visible. No
further input will occur in the next 5 minutes which causes the screen to be turned off
after 30 seconds. As long as nothing is noted, a test does not deviate from this pattern.

In the following, we calculate the amount of used energy in mW and its coeffi-
cient of variation (CV) for several power consumers or the whole system, respectively.
First, the CV is calculated for an idling phone (see next paragraph) and this defines
the average percentage of deviating consumed energy during a given time interval. In
other words, the CV for an idling phone describes the average amount of noise that is
introduced by all components. If any action consumes less energy than the noise rate
(i. e.., amount of energy described by the CV for an idling phone), it is not measurable
with a single measurement. We could of course measure the power demands of such
consumers if we would perform many measurements of the same consumer and would
calculate the noise out of the results. A detection engine that works with power sig-
natures does not have this kind of luxury, as it has to pinpoint malicious behavior as
soon as possible. If many measurements must occur in the first place, a malicious soft-
ware could already have easily performed its payload undetected. If the additionally
consumed power of some activity is given in later tests in a table (referred as “Rise”
in the corresponding column), it will be shown in bold letters if its value is above the
CV of an idling phone (WiFi or 3G), meaning the measured action has a higher energy
consumption than the average noise ratio of an idling phone. Such a component could
be detected by a power signature.

Tables with measurement results will also often contain a column labeled “Total
Cons.” that depicts the total consumed energy during the test as reported by PowerTu-
tor. Unexpected Framework and OS activities triggered during a test might introduce
additional noise, which can be seen in this column. The impact is of course higher for
the conducted short time test. If this value is higher than the total consumption of the
initial tests (see next paragraph) plus the noise ratio (CV value), it will also be written in
bold letters. This value does not related to the “Rise” column but describes unexpected
introduced noise in addition to any used energy throughout the test. Note that if the
value is written in bold letters, it does not imply that it can be detected in a reliable way.
It’s value must be significant higher than the CV value, which describes the average
noise. False positives are possible here, one must carefully check the size of the value.
Higher differences to the initial total consumption mean potentially less false positives.

Since PowerTutor is unable to measure the power consumption of the GSM modem,
we cannot provide any measurement about it’s usage. Still, we performed a test that in-
cludes the sending of short messages in Section 5.5. In order to overcome the drawbacks
of the utilization-based measurement method of PowerTutor, we strictly control all ad-



Mobile Malware Detection Based on Energy Fingerprints — A Dead End? 7

ditionally running applications (next to the running OS applications) and their access to
any device. Doing this mitigates the problem of accounting the used energy to programs
running in parallel.

4.1 Initial Tests

We start our evaluation with tests in which we measure the power consumption of sev-
eral components such as the display as well as the influence of running software. These
initial tests define a basis for later tests which are compared with the initial ones. Know-
ing the minimum amount of energy a smartphone requires in certain circumstances is
crucial for the detection of additional malicious activities.

Data Connectivity. This test evaluates the differences between a WiFi and a 3G connec-
tion on an otherwise idling phone. Table 1 shows how much power their usage consumes
if the connection is only established, but no data is actually transferred.

Table 1. Short time initial tests for a 5
minute period. Average power consump-
tion for wireless connections.
Connection Consumption CV

WiFi (always on) 51.17 mW 0.87%
WiFi (if screen is on) 51.26 mW 1.14%
3G 68.47 mW 9.49%

The WiFi connection can automatically be
turned off if the smartphone’s screen blanks in
order to safe energy. Using this feature saves
no energy in this short time span compared to
being always on. On average, the smartphone
consumes 51mW with an enabled WiFi con-
nection with a low CV. Remarkable among
these numbers is that the smartphone con-
sumes 34% less energy using WiFi instead of
3G. Additionally, the CV is much higher for the 3G connection, with measured abso-
lute numbers from 47.77 to 75.85mW . This is likely caused by different bitrates and
link qualities (GPRS, EDGE, UMTS, HSDPA) depending on the coverage area and the
signal strength at the time the test was conducted. It may even change for the same lo-
cation at different times. For the rest of this section, we compare the results of the other
tests against the values from this test where WiFi is always on and from the 3G case.

Background Processes. To get an idea of the energy consumption of the applications
running on a smartphone, we used PowerTutor to measure the energy usage of the au-
tomatically started preinstalled applications after each restart. The results can be found
in Table 2. What can be seen in this table is the fact that the foreground application—
which is the Launcher—consumes the largest amount of power. As it manages the live
wallpaper, PowerTutor will add the power consumption used by the OLED display to
show the wallpaper to the Launcher instead of to the Wallpaper application. However,
the same is not true for its CPU consumption. PowerTutor itself consumes about 3.0%
compared to the overall consumption, but this value is calculated out in all further tests.
All other values are left alone, as they present characteristics of the base system, such
as Android Services (by this term we mean several Android OS processes). Again, no
synchronization or other activities occurred during the short time tests, they will be
evaluated in Section 5.



8 Johannes Hoffmann, Stephan Neumann, Thorsten Holz

Table 2. Exemplary power consumption of differ-
ent apps after system start for a 5 minute interval.
Values in mW (missing energy was consumed in
unlisted components).

Application OLED CPU WiFi Total

Desktopclock 0.00 0.03 0.00 0.03
MyPhoneExplorer 0.00 0.00 0.00 0.05
Gallery3D 0.00 0.07 0.00 0.07
Android Services 0.00 0.12 0.11 0.23
Maps 0.00 0.00 0.34 0.92
PowerTutor 0.00 1.87 0.00 1.87
Wallpaper 0.00 4.31 0.00 4.31
Launcher 39.79 0.01 0.00 39.80

Brightness. The brightness of the dis-
play scales between 0 and 255, while
higher numbers represent a brighter dis-
play. The lowest user selectable value is
20. The value can be set manually or by
the system itself, which can determine
the brightness of the phone’s surround-
ings with a light sensor.

We measured the power consump-
tion for different values and the results
can be found in Table 3. During this
test, the display was never turned off
which will prevent the phone from en-
tering the sleep state. Additionally, the
WiFi connection was enabled. With these settings, the battery lasts for about 10 hours
with a difference of 2 hours between the darkest and the brightest setting.

Table 3. Average power consumption
for different brightness levels.

Setting Consumption VC

Dark (20) 445.89mW 2.50%
Auto (standard) 462.20mW 1.73%
Medium (130) 494.61mW 1.13%
Bright (255) 550.70mW 1.01%

What can be seen is that the brighter the dis-
play is, the smaller the CV gets. This is caused by
the relative high amount of power which is con-
sumed by the display, even for dark settings. All
other energy consumers such as background pro-
cesses quickly loose their significance in contrast to
this huge energy consumer, compared to the num-
bers from Table 2. These results show that the dis-
play’s energy demand plays a big role for the smart-
phone’s runtime.

4.2 Energy Greedy Functions

This section deals with software which aims to draw as much power as possible by var-
ious means. Such activities can be seen as a kind of DOS attack against the smartphone,
as it is unable to operate with a depleted battery.

Sleep Mode. We first determine how much energy gets consumed by the CPU if it is
not allowed to reach its energy saving sleep modes. It is easy to do this in Android,
as one only has to set a partial wake lock. This will cause the screen to be turned off
after the normal timeout but the CPU keeps running. This feature is normally used for
tasks which run periodically in the background and that shall not be interrupted when
the phone would otherwise enter its sleep mode.

Such a setting will consume 81.50mW in total and causes a raise of 59.27% in
terms of used battery power. Although PowerTutor does not detect that our software sets
the wake lock, the Android system does and marks it correspondingly in the “battery
settings”. Note that this can be easily detected by the user. However, setting a wake lock
is not a feature that has to be used to hide malicious activities in the background—at
least not to such an extend. Such a setting, whether used by mistake or on purpose, can
easily be detected by any program monitoring the power consumption.



Mobile Malware Detection Based on Energy Fingerprints — A Dead End? 9

CPU Burn. The last test revealed a high rise in energy consumption if the CPU keeps
running all the time. This test will determine how big the impact is when the CPU will
not only run all the time, but also has to crunch some numbers. Table 4 shows the results
of the following two tests. In the first one, the CPU is allowed to sleep when the screen
turns off. This way, the CPU will only have a maximum load when the phone is active.
In the second test the CPU is disallowed to enter it’s sleep state when the screen turns
off. During both tests, the program calls Math.sqrt() in a loop.

Table 4. Average power consumption for diff. power states.

Function MW Cons. Total Cons. Rise

Sleepmode allowed 54.02mW 110.29mW 105.57%
Sleepmode disallowed 518.84mW 602.92mW 1,013.95%

Both tests put a heavy bur-
den on the phone’s runtime.
While the first test “only” con-
sumes about double the energy
than it would normally do, the
second test clearly shows that
a malicious program can totally
disrupt the battery lifetime. With a raise of over 1,000% in energy consumption, the
battery would only last for about 8 hours even though the screen turns off. But again,
the Android system detects that our application wastes so much energy and the user can
take countermeasures. Additionally, the phone gets quite hot under such load. Some AV
program could also easily detect such (mis)use and alert the user.

4.3 Location API

Next, we evaluate how much energy is consumed while the location API is used. We
cover the case where the last known position is reused and when an accurate GPS po-
sition is requested. Since location data represents a very sensitive piece of information,
we measure the energy required to steal it from the phone.

Last Known Position. In this first test, our software will only use the last known po-
sition (LKP) which is returned by the Android API. Because no new position is de-
termined, the energy consumption is expected to be low. To mimic actual malware,
the returned coordinates are wrapped in an XML structure and sent over the network
through the WiFi or 3G connection. Table 5 shows the results; the position is retrieved
only once during the test. As expected, the power consumption is really low if the data
is only retrieved and not forwarded at all (WiFi is enabled, though). If it is sent over
the WiFi connection, the consumed energy raises a bit, but is still very low with a rise
of 0.25% over the normal consumption. This is basically only the amount of energy
needed to use the WiFi interface, which is evaluated in more detail in Section 4.4.

If position data (LKP) is sent over the 3G connection, 2.36% more energy is con-
sumed in contrast to the CV for an idling phone with an established 3G connection, cf.
Section 4.1. In Section 5, we evaluate whether the added consumption in the 3G case is
still measurable in real life scenarios and would therefore be detectable.

Determine GPS Location. This test makes use of the current GPS position which has to
be determined by the hardware GPS module. It is said that it consumes a lot of power;
we will see if this accusation is correct or not. The position is again retrieved only once



10 Johannes Hoffmann, Stephan Neumann, Thorsten Holz

by our software and sent over the network encapsulated in XML format. The results are
also presented in Table 5.

Table 5. Average power consumption for accessing the
location API. LKP = Last known position.

Connection Function MW Cons. Total Cons. Rise

WiFi

LKP 0.017mW 52.25mW 0.03%
LKP (sent) 0.126mW 51.39mW 0.25%
GPS 7.91mW 61.18mW 15.46%
GPS (sent) 7.97mW 63.28mW 15.58%

3G
LKP (sent) 8.111mW 87.25mW 11.85%
GPS (sent) 12.01mW 107.79mW 17.54%

What can be seen is that
our software consumes more than
7mW additional power when the
GPS module gets active. We have
to note that PowerTutor measures
the GPS module’s power con-
sumption separately, but we added
it to our malware consumption as it
is the sole program using it. It does
not matter whether the data is sent
over the network or not in order to
introduce a huge gain in consumed energy. If sent over the 3G connection, a rise of
17.54% is measured, which is clearly above the noise ratio even for the 3G connection.

4.4 Data Heist

This section examines whether the acquisition and forwarding of (private) information
raises the energy consumption to an extent that it is detectable. This is a common feature
of current mobile malware [21].

Table 6. Average power consumption for data transmission.

Connection Function MW Cons. Total Cons. Rise

WiFi
349 Bytes (1 SMS) 0.112mW 51.55mW 0.22%
37.6kB (200 SMS) 1.182mW 53.39mW 2.31%

365kB (2,000 SMS) 1.949mW 54.73mW 3.81%

3G
349 Bytes (1 SMS) 8.114mW 99.15mW 11.85%
37.6kB (200 SMS) 8.161mW 103.41mW 11.92%

365kB (2,000 SMS) 13.724mW 86.95mW 20.39%

Data Size. We first mea-
sure the impact of the file
size of the data which is
sent over the Internet con-
nection. To get an idea of
how much data is trans-
ferred, our malware sends
data equivalent to the size
of 1, 200 and 2,000 short
messages encapsulated in
a XML structure over TCP/IP. Table 6 lists the power consumption for both Internet
connection types. As one can clearly see, more sent data consumes more energy. The
higher consumption whilst using WiFi is more visible than for 3G, as this connec-
tion type implies less noise. Sending small quantities of data quickly puts the energy
consumption over our threshold for this short duration with both connection types. In
Section 5, we evaluate if this is still true for real world scenarios.

We also tested whether the data source has some impact on the energy consump-
tion. The results show that it does not matter if our data originates from some content
provider, the SD card and so on. Only the amount of data matters.

Encryption. Some sophisticated malware might encrypt the sent data to hide its inten-
tion. As encryption of course uses CPU cycles, we are interested if this overhead is
measurable. We performed the same measurements as above, but the data was addition-
ally encrypted with AES in Counter Mode with PKCS5Padding and a random key. We



Mobile Malware Detection Based on Energy Fingerprints — A Dead End? 11

have measured that our malware consumes 1.19mW of energy to encrypt 37.6kB of
data which is sent over the WiFi connection. Compared to our last test with data of the
same size, almost the same amount of energy is consumed: a rise of 2.33% instead of
2.31% is measured, which lets us conclude that the encryption only consumes 0.02%
more energy. Rather than using the 3G interface, we only performed the test with the
WiFi interface as the results are more clean due to lower noise. Additional encryption
is therefore not measurable as it is indistinguishable from noise, at least with a cipher
such as AES.

5 Long Time Tests

Table 7. Joblist scenario A.
Minute Job Duration

5 1x write SMS 1 minute (160 characters)
10 1x send SMS 1 minute (160 characters)
20 Use Browser 5 minutes (4 site accesses)
25 Music 10 minutes (display off)
35 Facebook App 2 minutes
50 Angry Birds 5 minutes
55 1x E-Mail 1 minute (120 characters)

This section covers long time tests
which evaluate if and to what ex-
tend the aforementioned features are
measurable by means of their power
consumption under two more realistic
scenarios. The first scenario (A) cov-
ers a real world scenario where the
smartphone is heavily used, while the
other (B) covers a scenario with light
usage. The details of the two scenarios
can be found in Tables 7 and 8. Both scenarios are run for 1 hour and repeated three
times, resulting in a total duration of three hours for each test run.

Table 8. Joblist for scenario B.
Minute Job Duration

5 1x write SMS 1 minute (160 characters)
20 Use Browser 2 minutes (1 site access)
30 Music 3 minutes (display off)
40 1x E-Mail 1 minute (120 characters)

In order to simulate an average Jon
Doe’s smartphone, several Widgets were
visible on the home screen (Facebook,
Twitter, a clock, and a weather forecast)
in scenario A. These were absent in sce-
nario B, but both additionally made use
of background mail fetching (POP3 with
K-9 Mail, every 15 minutes) and syn-
chronized the data with Google. GPS was enabled all the time and everything else was
left at it’s default setting.

5.1 Initial Tests

In order to detect malicious activities, we again first need to know how much energy
is consumed in both scenarios without them. Table 9 shows the four CV values which
again represent our threshold values. Any action which consumes less energy than these
values is indistinguishable from noise in the corresponding scenario.

The battery charge value is eye-catching. Although in scenario B the total energy
consumption differs by approximate 50%, the charge level is even higher for a more
depleted battery. This is a strong indicator that the user cannot trust the battery charge
value by any means and that it should only be considered as a very vague value.



12 Johannes Hoffmann, Stephan Neumann, Thorsten Holz

Table 9. Long time initial tests (3 hour period).

Scenario Function Charge Total Cons. CV

A (heavy)
WiFi 63% 299.67mW 2.08%

3G 48% 419.09mW 2.67%

B (light)
WiFi 77% 97.28mW 2.79%

3G 78% 145.14mW 3.16%

As this test includes normal user be-
havior such as Web browsing, the power
consumptions depends a lot on the actual
user input. For example, when and how
long the Web browser is used is defined
and always the same in all tests, but the
actual power consumptions is influenced
a lot by the actual accessed Web sites. The
OLED display might consume more or less energy on one website as it would display-
ing another one. The same is true for the browser process. How many and what scripts
are executed, is the browser’s geolocation API accessed? During the test the same web-
sites were visited, but the content changed over time which at least might influenced the
OLED display to a certain extent.

Table 10. Exemplary power consumption of dif-
ferent apps (scenario A). Values in mW (missing
energy was consumed by unlisted components).

Application OLED CPU WiFi Total

PowerTutor 0.25 3.45 0.00 3.70
K9-Mail 13.87 0.60 0.48 14.95
MMS Application 21.44 1.04 0.00 22.48
Music 0.00 0.34 0.00 26.28
Launcher 28.05 1.46 0.00 29.51
Facebook 26.98 12.47 8.40 47.85
Angry Birds 53.89 9.71 1.51 68.10
Browser 39.79 14.28 1.01 78.01

As one could already see in the short
tests, the 3G Internet connection uses
more power than the WiFi connection.
The CV for the tests with 3G connec-
tions is much lower as in the short tests
because there are a lot more actions per-
formed than just keeping this connection
up, which reduces the noise introduced
by this consumer. The same is true in the
opposing way for the WiFi connection,
as the CV goes up for these scenarios.

Table 10 provides an overview of the
power consumption of several apps as
we did in the last section. As one would expect, the game Angry Birds and the Web
browser consume a lot of energy. The values for the OLED display, the CPU, and the
WiFi module also look sane and correlate to the provided applications functionality ex-
cept for the Facebook app. The CPU consumption seems a bit high. The reason for this
is unclear, but the app felt unresponsive on the old phone which might be caused by not
well written code. The missing values for the apps total energy consumption are used
by the GPS module, the speaker and other devices.

5.2 Energy Greedy Functions

In this test, we again stress the CPU to its maximum in both scenarios. Since we want
to know how big the impact of such energy-greedy software is in contrast to all other
apps, we disabled the sleep mode, meaning that the CPU and all apps keep running even
when the display blanks. Table 11 shows the results. As one would expect, our malware
consumes a lot of energy in both scenarios but most in scenario B, as it gets more
CPU cycles in total because there is less concurrent interaction opposed to scenario A.
This is also caused by the fact that Android prioritizes foreground apps. The energy
consumption compared to Table 4 is a bit lower, as other software runs next to our
malware. The values are not higher as one might wrongly expect because W is defined
as one joule per second.



Mobile Malware Detection Based on Energy Fingerprints — A Dead End? 13

Table 11. Average power consumption with
disabled sleepmode (WiFi only).

Scenario MW Cons. Total Cons. Rise

A (heavy) 419.26mW 764.53mW 139.91%
B (light) 505.55mW 645.82mW 519.69%

Under these circumstances, the smart-
phone’s battery will last for approximately
8 hours in scenario A and 6.7 hours in sce-
nario B. If the user does not know how to
check which apps consume what amount of
energy, this will vastly degrade the user’s
smartphone experience. Additionally, if the
CPU is not the fastest, the user might feel some unresponsivenesses in some apps. Nev-
ertheless, this behavior can be detected by AV software in both scenarios.

5.3 Location API

Table 12. Average power consumption for stealing GPS
position (WiFi only).

Scenario Function MW Cons. Total Cons. Rise

A (heavy)

5 minutes 5.32mW 315.61mW 1.78%
15 minutes 2.88mW 328.49mW 0.96%
30 minutes 2.56mW 304.88mW 0.85%
60 minutes 0.87mW 292.97mW 0.29%

B (light)

5 minutes 6.11mW 105.42mW 6.28%
15 minutes 2.24mW 100.84mW 2.30%
30 minutes 1.73mW 104.12mW 1.78%
60 minutes 0.94mW 101.08mW 0.97%

In this section we test how much
energy a “tracker app“ consumes
under what circumstances. If an
app retrieves the last known loca-
tion from the API, almost no en-
ergy is consumed. We therefore
limit our tests to the case where
our malware retrieves the GPS lo-
cation. We chose four different in-
tervals for each scenario and the
location is always encapsulated in
an XML structure and sent out
through the WiFi interface.

Table 12 shows the consumed energy for each test case. The results show that re-
trieving the location during the long time tests is less obtrusive compared to the short
time tests. In scenario A, the added power consumption is indistinguishable from noise
and in scenario B carefully set parameters are also indistinguishable (interval ≥ 15).
Our location listener was updated at the set interval, but an additional parameter which
sets the minimum distance from the last location which must be reached in order to get
notified was set to 0. This means that our malware woke up at all interval times, even
if the location did not change. One could be much more energy friendly if a minimum
distance is set and/or if a passive location listener is used which only gets notified if
some other app is performing a regular location request.

5.4 Data Heist

The short time tests revealed that even small quantities of data sent through either the
WiFi or the 3G interface are detectable. This section examines if this is also true for
real world scenarios. In both scenarios, 369kB are read and sent through each interface.
Two different intervals were tested during which the data was sent. Table 13 shows the
results for each test. It is clearly visible, that data heist from a spyware is not that easily
detectable in a real world scenario. A well written malicious software that steals data
could send approximately 35MB of data in small chunks in 3 hours without being de-
tectable by its energy consumption. This amount decreases vastly for the 3G interface.



14 Johannes Hoffmann, Stephan Neumann, Thorsten Holz

Table 13. Average power consumption for data transmission.

Scenario Function MW Cons. Total Cons. Rise

A (heavy)
WiFi

5 min. (13MB) 2.01mW 295.71mW 0.67%
1 min. (65MB) 11.42mW 322.82mW 3.81%

3G
5 min. (13MB) 8.02mW 450.65mW 1.91%
1 min. (65MB) 51.72mW 538.74mW 12.34%

B (light)
WiFi

5 min. (13MB) 2.14mW 100.84mW 2.20%
1 min. (65MB) 6.11mW 105.42mW 6.28%

3G
5 min. (13MB) 7.50mW 148.82mW 5.17%
1 min. (65MB) 39.78mW 197.78mW 27.41%

Data theft can—to
some extent—be detect-
able by means of ad-
ditionally used energy.
This means that it gets
detectable if, e. g., many
pictures or music files
are copied. In contrast
to that, theft of SMS
databases or serial num-
bers such as the IMEI
are unrecognizable.

5.5 Galaxy Nexus

Next to our test with PowerTutor on a HTC Nexus One, we also performed some tests
with a Samsung Galaxy Nexus. Since PowerTutor is not fine tuned to this phone, we
only use the provided battery charge level and the reported battery voltage by the tool
(similar to the approaches presented in the literature [12,13]). This way we can deter-
mine what is possible without a sophisticated tool.

We performed three tests on the Galaxy Nexus. The first two are identical to the last
two from the previous test: data is sent over the WiFi interface in two different intervals
for our two scenarios. In the third test, our malware sends a short message every 5
minutes resulting in 36 messages over 3 hours. Unfortunately, PowerTutor is unable
to measure the power consumption of the GSM modem. Therefore, this test was not
performed on the Nexus One and cannot be compared to any previous measurements.

Table 14. Battery charge level for the Galaxy Nexus after
sending data and short messages (WiFi only).

Scenario Function Charge Voltage

A (heavy)

Initial test 74% 3,812mV
5 minutes/13MB 79% 3,887mV
1 minute/65MB 76% 3,900mV
36x SMS (every 5 minutes) 76% 3,845mV

B (light)

Initial test 90% 4,060mV
5 minutes/13MB 91% 4,072mV
1 minute/65MB 91% 4,023mV
36x SMS (every 5 minutes) 90% 4,022mV

In order to obtain any in-
formation about the phone’s
power consumption, we began
our evaluation with a measure-
ment of the phone’s energy de-
mands for the two scenarios
without any additional actions.
We again call them initial tests
and they are performed in the
same way as mentioned before
(3 hours in total). The results
can be found in Table 14 and
clearly tell one story: Without
any sophisticated measurement of the actual consumed power, no predictions of any
additional running malware can be made (at least for our chosen scenarios and tests).
Each test ended up with a battery charge rate which was higher than that for the initial
test. This should of course not be the case, as additional actions were performed. The
reported voltage also does not correlate to our expectation that more energy is used and
it should therefore be lower (the battery voltage decreases if depleted). Therefore, a user
cannot trust the values displayed on the phone and so cannot any monitoring software.



Mobile Malware Detection Based on Energy Fingerprints — A Dead End? 15

6 Validation with Real-World Malware

This section covers the energy demands of two malicious software samples named
Gone in 60 seconds (GI60S) and Superclean/DroidCleaner (SC) that were found in the
Google Play Store in September 2011 and January 2013. We have tested whether they
are detectable in our test scenarios from the last section and validate our measurements
for the Nexus One.

Table 15. Verification with malware in controlled
scenarios (WiFi only).

Scenario MW MW Cons. Total Cons. Rise

A (heavy)
GI60S 1.45mW 311.51mW 0.48%

SC 4.06mW 296.87mW 1.35%

B (light)
GI60S 1.54mW 103.35mW 1.58%

SC 5.60mW 113.65mW 5.45%

We now briefly explain what both
samples do. GI60S is a not a malware
per se, but mostly classified as such.
Once it is installed, it sends the follow-
ing data to some server: contacts, short
messages, call history, and browser his-
tory. When finished, it will display a
code that can be entered on the GI60S
homepage which will enable the user to
see all stolen data (messages are behind a paywall). In a last step, the software removes
itself from the smartphone. In our case, 251kB of data got transferred. The name is
based on the fact that all this is done in less than 60 seconds. SC promises to speed
up the smartphone by freeing up memory. Additionally, it aims to infect a connected
PC by downloading and storing files on the SD card which are possibly run by a Win-
dows system if the smartphone is used as an external storage device. It also offers some
bot functionality and is able to gather and forward a bunch of information about the
infected device to the author. The author can also forward and delete arbitrary files,
send and receive SMS, phish for passwords, and control some device settings. More
detailed analysis reports are available on the Internet [18]. We wrote a small server for
SC and tricked it into connecting to this one and not the original one (which was already
down). This way we were able to control the bot and send commands to it in order to
measure the consumed power. We used the functionality to download several files (im-
ages, PDF and music), SMS, and contacts next to retrieving all information about the
phone. 22.46MB of data were transferred over WiFi to our server. Table 15 shows the
results of our measurements.

Table 16. Power Consumption during the “all day long
tests”. The CV is calculated from 8 time slices during that
period lasting for 1 hour each.

Run Application Consumption CV Rise Charge

1st day
Total 64.57mW 70.40% 40%

GI60S 1.24mW 1.92%

2nd day
Total 87.14mW 82.86% 56%

GI60S 0.54mW 0.62%

It can be seen that the en-
ergy consumption is similar to
our test malware with the corre-
sponding feature set. Therefore,
our malware has a reasonable
power consumption and the re-
sults should be comparable to
other software performing sim-
ilar tasks. This also means that
both samples are in 3 out of 4
cases not detectable by its power consumption as our measurements reveal—they go
down in the noise. The total power consumption is even lower than the initial one for
the SC case and is only slightly above the CV for the initial consumption for both
GI60S cases. Only the SC test in scenario B is detectable which is not astonishing, as



16 Johannes Hoffmann, Stephan Neumann, Thorsten Holz

we copied a lot of data from the phone which raises the energy consumption a lot in the
light usage scenario. Malware could act much less inconspicuous, but that was not our
goal in this test.

Furthermore, we tested GI60S in an “all day long test” (i.e., the phone was “used
normally” during an 8 hour period). During this time, GI60S was run once such that all
data was stolen. This test was performed twice and the results can be found in Table 16.
These show that the overall power consumption during an 8 hour period can greatly
differ. The CV for the total consumption during a day (total runtime was divided into
8 slices lasting one hour each) is huge, with over 70%. This means, the power consumed
during one hour of usage might be completely different from the last hour, depending
on the actual usage pattern. Having such a high CV, it is almost impossible to detect
anything based on a single power measurement. Even if very accurate and timely mea-
surements with small intervals are available and the smartphone reports accurate battery
levels, this would still be a tough job since the user has such a big influence and his ac-
tions are almost unpredictable resulting in a very high noise ratio. The solution proposed
by Dixon [5] might lower the CV, but it seems unlikely that it will reach a usable value.
We have not tested SC in this test since the results should be very similar.

7 Discussion

In this section, we evaluate our measurements and findings. We can boldly say that
measuring power consumption on a smartphone in general is not an easy task. There
are many parameters that influence the whole system and thus the energy demand and
ultimately the smartphone’s runtime. Let alone the fact that precise battery charge levels
are very hard to measure and depend on a lot of different factors [1,17], it is even
harder doing with software only. This fact is somehow mitigated as PowerTutor is a
very specialized tool for this task and is adjusted for the used smartphone. We therefore
deem its measurements as accurate enough for our purposes although it is not perfect.

We will now compare our results with the proposed solutions of VirusMeter [13].
The creation of power signatures would not be satisfactorily for us on a modern smart-
phone operating system: such a signature would contain the energy demands of the
application in question under certain circumstances. If an app would suddenly act in a
malicious way (e. g., stealing private information) a monitor should detect these actions
based on its power signature. In theory, this should work as all additional (malicious)
actions will use additional energy which is measurable. In practice however, accurate
measurements are hard to perform as discussed throughout this paper. This will yield
to a certain error rate which we called “noise” in the previous sections. This noise de-
scribes the varying amount of energy which is consumed more or less for the same
action(s) in the same amount of time. Even for a five minute interval, a noise ratio of
1% was measured. Despite the fact that we were able to control many settings on the
smartphone during this time span, our measurements were not 100% accurate. Since
we used a modern smartphone with a variety of features, this problems gets worse for
larger intervals as more features kick in (e. g., email fetching or synchronization). This
leads to a noise ratio of up to 2.79% for long time tests. The fact that such a monitor
should run on everyday smartphones, forces it to cope with such noise ratios.



Mobile Malware Detection Based on Energy Fingerprints — A Dead End? 17

Our measurements for the various test cases in Sections 4 and 5 show that such a
power signature would not be accurate enough, as a lot of possible malicious activities
can easily go by undetected compared to the measured amount of energy these actions
cause. If such a signature would only work with the total consumed power of the smart-
phone, it will alert the user for a lot of these actions. But, if the total consumption is
higher than the initial power consumption plus the CV value, this only means that the
action required more energy than the average noise level. Many tests lead to values
which are just a bit above this threshold which could lead to many false positives. Gen-
erating a good threshold is inherently hard, as the users’ habits may change and even
for the same user and for two consecutive days the CV is above 70% (see Table 16),
which is completely unusable. Lowering the measurement interval could decrease the
CV, but only to some extent as it heavily depends on actual user input in some cases,
see Section 9 for an example. A detailed analysis of the smartphone usage of 250 users
was conducted by Falaki et al. [9] and they also found out that even a single user can
show very varying usage patterns. If the total consumption is not considered, an attacker
could, e. g., steal an amount as high as 35MB over 3 hours without being conspicuously.
This is also true for a lot of other actions.

If one not only analyzes the energy consumption introduced by an application in
total or even on a device basis (e. g., WiFi), consumption patterns might occur. But
these patterns still suffer from the introduced noise, as the power consumption is only
interfered from a model that was previously generated (the phone does not provide
power stats of sole devices). Having some kind of pattern which states that some app
consumed x1 mW during y1 seconds in device z1 and then x2 mW during y2 seconds
in device z2 and so on, one could use that as a signature. However, searching for that
information in, e. g., the syscall trace would also be enough because it was used to
interfere these values in the first place.

Although such power signatures cannot detect the described activities, they still can
detect some malicious ones. Amateurish written malware could be detected if too many
features are used too aggressively, e. g., determining the current position by GPS in a
very short interval. What is easily detectable is energy-greedy malware which has the
goal to disrupt the battery lifetime. But this clearly is not the normal behavior malware
exhibits—most of them steal (private) data or send premium rate SMS.

This leads us back to VirusMeter: this approach makes use of predicted user behav-
ior and their resulting energy demands. If the used energy (measured by the different
battery charge levels) does not match the assumption, then something is wrong and an
alert is generated. While the tools to measure events and power consumption clearly im-
proved compared to the possibilities the authors of VirusMeter faced, we cannot verify
their findings for a modern Android based smartphone. The noise ratio and the impact
of interfering events is too big to get good and usable results (see, e. g., Table 16). Even
if all events and measurements are logged and some sophisticated heuristic performs
the evaluation externally or on the smartphone itself if the battery is charging, malware
can still hide below the noise level.

We believe the noise level is the biggest show stopper for such a detection approach.
All other proposed tools such as eprof [15] and AppScope [19] have error rates, and
therefore noise ratios, which are too high. Using some sophisticated power model will



18 Johannes Hoffmann, Stephan Neumann, Thorsten Holz

not negate the small amount of additional energy (often below 2%, which is under the
mean error rate for most tools and settings) that is needed to perform most malicious
activities. We therefore opted to not generate our own model as it is unable to cope with
such settings.

Even if malicious activities are detected by such means, most activities would al-
ready have finished and the damage would have been committed. Otherwise, no addi-
tional power would have been consumed in order to perform any detection. This as-
sumption lets us further expect that such a system is not feasible in any satisfying man-
ner as most of the relevant cases can only be detected when it is too late. Additionally,
we believe that the false-positive and false-negative rate would be too high in practice,
even if the system does not aim to prevent but only to detect malicious activities.

8 Limitations

In order to reach the goal of this paper—namely to evaluate whether the detection of
malware running on a mobile phone is possible by measuring the power consumption
of certain activities and devices—we need precise power measurements. We believe
that PowerTutor is a good starting point on an adjusted device such as the Nexus One.
Although the measurements are not perfect, we deem them accurate enough for our
purposes. At least they are more accurate than the parameters used for VirusMeter [13].
Additionally, the mean error rate is comparable to other tools such as Appscope and
eprof. One thing PowerTutor is unable to cope with is the power consumption of ac-
tions which make use of the GSM modem, such as the short message service. We were
therefore unable to measure precise results for such activities. Another thing that is not
reported in a good manner is the power consumption of the GPS device. PowerTutor
can only report the consumption of the whole device, not the consumption of a specific
“consumer”. We therefore have to calculate an approximate value for its usage if more
than one software is using it. eprof would be better suited for such a test case, as it is
able to calculate the consumption for each app separately.

The authors of VirusMeter build a profile for the user in order to detect anomalies
which we did not do. We refrained from doing so, as our measured numbers are either
too close at our thresholds (CV) or too far away. Without reasonable results for the long
time tests generating such a model is futile in our opinion regarding a low false-positive
count. The user’s activities are just too random for modern smartphones [9].

Additionally, our tests were mainly performed with one smartphone, the Nexus One.
A second phone, the Galaxy Nexus, was only used in two test cases to get a feeling of
how a monitoring software performs which does not have access to accurate results
such as provided from PowerTutor. More tested devices would of course be favorable,
but the Nexus One is the only device which is supported by PowerTutor and is still
modern enough to actually perform meaningful tests with it. In fact, AppScope also
only supports this phone. Furthermore, the results are not encouraging at all.

We tried to be as precise as possible during our tests. But since these tests were
all performed by hand, there are certainly slight variations for each result. Automatic
testing was not possible, so all the performed tests took a lot of time and patience.



Mobile Malware Detection Based on Energy Fingerprints — A Dead End? 19

9 Conclusion

Our results indicate that software-based approaches to measure the power consumption
of an Android smartphone and to interfere from these results whether additional ma-
licious activities occurred, is not satisfactory in most cases. The approach mainly fails
due to the noise introduced into the system by unpredictable user and environment inter-
actions, such as the reception rate or the delivered content of accessed websites. While
a more precise power model could mitigate effects such as varying reception rates, it
cannot calculate out the effects of many user interactions, e. g., browser usage. This is
at least true for our long time test results, which do not have optimal but comparatively
real world settings. The short time tests indicate that some activities can be detected by
such a system, but under settings seldom found on a smartphone that is regularly used.

We even go one step further and think that such a system is not feasible at all on
a modern smartphone—at least with available measurement methods and normal use
cases. Let alone the fact that the hardware parts have to provide very accurate values of
consumed energy, the system still needs a very precise model of what the user usually
does and how much energy these actions typically consume. We assume that such an
anomaly detection would generate a lot of false positives, as normal users change their
behavior quite often, depending on the actually installed apps and so on. Even if a
precise profile would exist and the user would not change his habits too often, apps can
be very dynamic in a way that a power profile for these apps cannot be precise at all.
Just imagine what the browser is capable of (e. g., complete Office suites are offered as
a web application) and try to generate a power signature for its behavior.

We conclude that well written malicious software running on a modern smartphone
can hardly be detected by means of additionally consumed energy as the noise ratio is
too high. Only DoS attacks against the battery runtime and so called “energy bugs” [11]
as well as certain activities performed under strictly given scenarios can be detected,
which is not enough to be of great use for normal smartphone usage patterns.

As a last point we note that modern smartphones with modern operating systems
such as Android are more or less a general purpose computer with a very small form
factor. If such proposed systems would be usable as a malware detector, they should
also work on regular notebooks or PCs. To the best of our knowledge, no such system
was ever used for this purpose. We therefore deem energy based approaches for malware
detection as a dead end—at least for modern smartphones without extended capabilities
to account for used energy.

Acknowledgments This work has been supported by the German Federal Ministry of
Education and Research (BMBF grant 01BY1020 – MobWorm).

References

1. Battery Performance Characteristics. http://www.mpoweruk.com/performance.htm.
2. N. Balasubramanian, A. Balasubramanian, and A. Venkataramani. Energy Consumption

in Mobile Phones: A Measurement Study and Implications for Network Applications. In
Internet Measurement Conference (IMC), 2009.

3. Christy Pettey and Rob van der Meulen. Gartner Says Worldwide Sales of Mobile Phones
Declined 3 Percent in Third Quarter of 2012; Smartphone Sales Increased 47 Percent.
http://www.gartner.com/newsroom/id/2237315.



20 Johannes Hoffmann, Stephan Neumann, Thorsten Holz

4. D. Maslennikov and Y. Namestnikov. Kaspersky Security Bulletin. The overall statistics for
2012. www.securelist.com/en/analysis/204792255/Kaspersky Security Bulletin 2012 The
overall statistics for 2012.

5. B. Dixon, Y. Jiang, A. Jaiantilal, and S. Mishra. Location based power analysis to detect
malicious code in smartphones. In ACM Workshop on Security and Privacy in Smartphones
and Mobile Devices, SPSM, 2011.

6. M. Dong and L. Zhong. Self-Constructive High-Rate System Energy Modeling for Battery-
Powered Mobile Systems. In International Conference on Mobile Systems, Applications,
and Services, MobiSys, 2011.

7. M. Egele, C. Kruegel, E. Kirda, and G. Vigna. PiOS: Detecting Privacy Leaks in iOS Appli-
cations. In Network and Distributed System Security Symposium (NDSS), 2011.

8. W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N. Sheth. Taintdroid:
An information-flow tracking system for realtime privacy monitoring on smartphones. In
USENIX Symposium on Operating Systems Design and Implementation, OSDI, 2010.

9. H. Falaki, R. Mahajan, S. Kandula, D. Lymberopoulos, R. Govindan, and D. Estrin. Diversity
in smartphone usage. In International Conference on Mobile Systems, Applications and
Services, MobiSys, 2010.

10. M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang. RiskRanker: Scalable and Accurate
Zero-day Android Malware Detection. In International Conference on Mobile Systems, Ap-
plications, and Services, MobiSys, 2012.

11. A. Jindal, A. Pathak, Y. C. Hu, and S. P. Midkiff. Hypnos: Understanding and Treating Sleep
Conflicts in Smartphones. In EuroSys, pages 253–266, 2013.

12. H. Kim, J. Smith, and K. G. Shin. Detecting Energy-Greedy Anomalies and Mobile Mal-
ware Variants. In International Conference on Mobile Systems, Applications and Services,
MobiSys, 2008.

13. L. Liu, G. Yan, X. Zhang, and S. Chen. VirusMeter: Preventing Your Cellphone from Spies.
In International Symposium on Recent Advances in Intrusion Detection, RAID, 2009.

14. S. Park, A. Savvides, and M. Srivastava. Battery Capacity Measurement And Analysis Using
Lithium Coin Cell Battery. In International Symposium on Low Power Electronics and
Design, ISLPED, 2001.

15. A. Pathak, Y. C. Hu, and M. Zhang. Where is the energy spent inside my app? Fine Grained
Energy Accounting on Smartphones with Eprof. In ACM European Conference on Computer
Systems, EuroSys, 2012.

16. A. Pathak, Y. C. Hu, M. Zhang, P. Bahl, and Y.-M. Wang. Fine-Grained Power Modeling
for Smartphones Using System Call Tracing. In ACM European Conference on Computer
Systems, EuroSys, 2011.

17. R. Rao, S. Vrudhula, and D. Rakhmatov. Battery modeling for energy aware system design.
Computer, 36(12):77–87, Dec. 2003.

18. Victor Chebyshev. Mobile attacks! http://www.securelist.com/en/blog/805/Mobile attacks.
19. C. Yoon, D. Kim, W. Jung, C. Kang, and H. Cha. AppScope: Application Energy Metering

Framework for Android Smartphones Using Kernel Activity Monitoring. In USENIX Annual
Technical Conference, ATC, 2012.

20. L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao, and L. Yang. Accurate
online power estimation and automatic battery behavior based power model generation for
smartphones. In Conference on Hardware/Software Codesign and System Synthesis, 2010.

21. Y. Zhou and X. Jiang. Dissecting Android Malware: Characterization and Evolution. In
IEEE Symposium on Security and Privacy, 2012.

22. Y. Zhou, Z. Wang, W. Zhou, and X. Jiang. Hey, You, Get Off of My Market: Detecting
Malicious Apps in Official and Alternative Android Markets. In Network and Distributed
System Security Symposium (NDSS), 2012.


	Mobile Malware Detection Based on Energy Fingerprints — A Dead End?
	Introduction
	Related Work
	Measurement Setup
	Android Application
	Test Devices

	Short Time Tests
	Initial Tests
	Energy Greedy Functions
	Location API
	Data Heist

	Long Time Tests
	Initial Tests
	Energy Greedy Functions
	Location API
	Data Heist
	Galaxy Nexus

	Validation with Real-World Malware
	Discussion
	Limitations
	Conclusion


